10(x^2-5)=75

Simple and best practice solution for 10(x^2-5)=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(x^2-5)=75 equation:



10(x^2-5)=75
We move all terms to the left:
10(x^2-5)-(75)=0
We multiply parentheses
10x^2-50-75=0
We add all the numbers together, and all the variables
10x^2-125=0
a = 10; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·10·(-125)
Δ = 5000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5000}=\sqrt{2500*2}=\sqrt{2500}*\sqrt{2}=50\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{2}}{2*10}=\frac{0-50\sqrt{2}}{20} =-\frac{50\sqrt{2}}{20} =-\frac{5\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{2}}{2*10}=\frac{0+50\sqrt{2}}{20} =\frac{50\sqrt{2}}{20} =\frac{5\sqrt{2}}{2} $

See similar equations:

| K(x)=-4+2x | | 80x^2=80 | | 3^y+1=8 | | 9(x+1)-(x+2)=-79 | | 10+5b=-60 | | 2p^2+13p-24=0 | | 8(s-9)=-5+(-4) | | Y=3x+13.5 | | 9(x+1-(x+2)=79 | | y=5.9+139.9(264) | | 1+12=6y | | 6x+10=15-4x | | 8(x^2-10)=40 | | -3+12=6y | | 5(4-t)=9 | | -10+3f=9+3f | | 129+(x+19)=180 | | -4+12=6y | | 6b+4=3b-20 | | 8=-5(k-6) | | 6b+4=3b-30 | | 3.5x-5=2.5x+3 | | 4+12=6y | | 8=-5(k-6 | | 3+12=6y | | 24=2x+8+6x | | -4(a-11)=2+(-9) | | 18=5(x-2)+3x-4 | | 2x+4x-x=6x | | 6=x−21 | | 2+12=6y | | 2x+4x-x=6x* |

Equations solver categories